MIT WOMEN'S TECHNOLOGY PROGRAM 2 WEEK PROGRAM IN MECHANICAL ENGINEERING

Sparking interest in the future study of engineering

The Women's Technology Program (WTP) inspires talented high school students, particularly those who may not have previously considered engineering, to pursue engineering in college and beyond.

WTP is a women-focused transformative two-week program at MIT for students who excel in math and science but have limited experience in mechanical engineering.

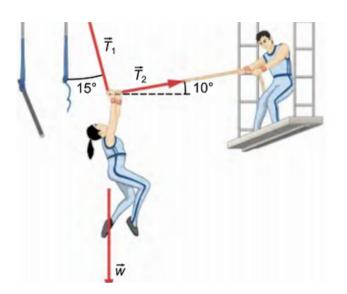
The immersive experience enables them to explore the discipline through hands-on, team-based projects. Participants brainstorm innovative solutions and build projects, all while developing crucial skills in problem-solving, teamwork, and creative thinking.

Unique in its design, WTP focuses on academic growth by encouraging students to take chances without fear of failure.

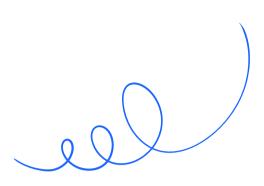
Grounded in research-based teaching methodologies, participants dive into dynamic, active learning activities. This approach transcends traditional teaching and learning, helping to build confidence in the high school participants.

By nurturing the next generation of engineers from diverse gender backgrounds, the program not only promotes equity but also enhances the engineering field with a wide range of perspectives and ideas. This diversity is crucial for driving innovation and solving complex challenges in today's world.

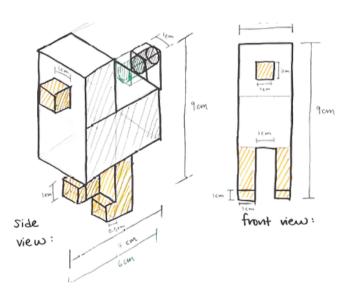
Dr. Barbara Hughey WTP Director


Week 1	Week 2		
Monday Physics: Forces Drawing Foam Cutter Build 	Monday Rotational Motion Coding Rube Goldberg 		
Tuesday Materials Energy/Momentum Brainstorming 	TuesdayRube GoldbergEngineering showcase		
Wednesday Electronics Shop Tour Maker Activity 	Wednesday • Rube Goldberg		
Thursday Motors & Gears Static Torque Glass Lab Tour 	Thursday • Rube Goldberg		
Friday • Rube Goldberg Prototyping • Structures • Crane Building	Friday • Rube Goldberg Public Demo and Movie Creation		
Saturday/Sunday • Museum of Science • MIT Museum	 (Almost) Daily Lunch talks by local engineers 		

Coursework


Program Overview

Students are invited to take part in their own active learning

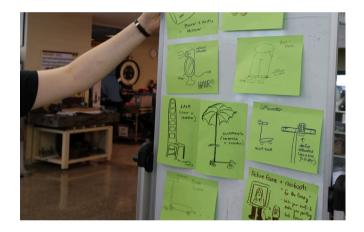

Drawing

- 1. Understand the purpose and value of sketching
- 2. Understand the purpose and value of technical drawing
- 3. Read and create dimensioned drawings

Forces and Free Body Diagrams

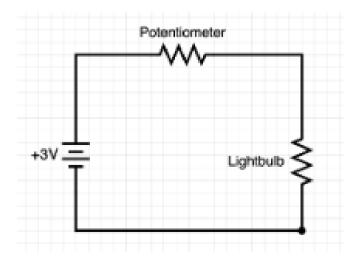
- 1. Become familiar with identifying and organizing relevant information in engineering problems
- 2.Become familiar with making assumptions and modeling real systems
- 3. Understand how to analyze physical systems of forces

Materials


- 1. Understand, calculate, and estimate stresses and strains
- 2. Identify elastic and plastic deformation
- 3. Characterize a material by its stress and strain relationship

Energy and Momentum

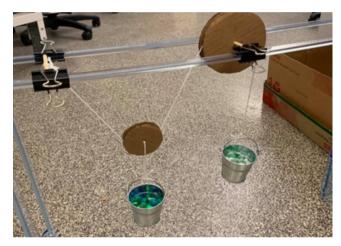
- 1. Describe the relationship between mass, velocity, linear momentum, and energy
- 2. Analyze how mass, velocity and linear momentum, and energy change in different types of collisions
- 3. Design systems of objects and predict how they will behave


Creativity and Brainstorming

- 1. Enhance creativity and problem-solving skills
- 2.Become familiar with the engineering design process
- 3.Become familiar with the idea generation process

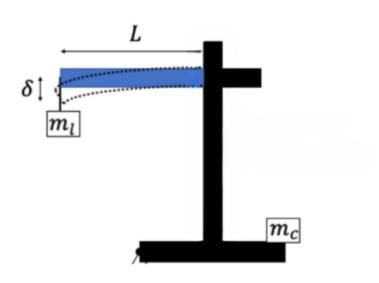
Electronics & Circuits

- 1. Understand the concepts of resistance and power in circuits
- 2. Learn about different configurations of circuits
- 3. Understand how to create simple circuits



Motors and Gears

- 1. Learn basic principles of a DC motor 2. Select an appropriate DC motor
- 3. Understand gear ratios


Static Torque

- 1. Describe the connection between forces and torques
- 2. Find the magnitude and direction of a torque.
- 3. Analyze simple static equilibrium problems using FBDs, and create similar real life systems that behave as expected

Structures

- 1. Determine reaction forces and moments at beam supports
- 2.Compare area moments of inertia between different shaped beams
- 3.Compete the deflection from bending of a beam

Rotational Motion

- 1. Identify when to use polar coordinates and use them to find angular displacements, velocities, and accelerations.
- 2. Use periods and frequency to describe and design rotational systems.
- 3. Gain intuition for moments of inertia and understanding of how a large or small moment can affect the dynamics of a design.

MAKE PLOTS

or d, ax in zip(d_values, axs.flatten()):
 # plot horizontal and vertical centerlines
 ax.hlines(y = 0, xmin = -R, xmax = R, linewidth =
 ax.vlines(x = 0, ymin = -R, ymax = R, linewidth =

plot spirographs

x, y = spirograph(R, r, d) # calculate the x- and color = random_RGB() # sample a color by ca ax.plot(x, y, color = color, lw = 3)

ax.set_box_aspect(aspect = 1) # make sure the plo

Coding - Applying Equations to Real Systems

- 1. Explore diverse applications of computation
- 2. Use computation to balance competing requirements
- 3. Use numerical computation to predict performance from equations

Workshops and Tours

Foam Cutter Build

Students gain confidences in their maker skills while building a hot wire foam cutter

Shop Tour

Students receive a tour of the Pappalardo Lab and learn about the different machines and what kinds of manufacturing processes they perform.

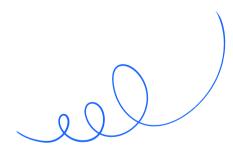
Maker Activity

Students learn how to use band saw and disk sander and laser cutter while building a lit acryilic stand.

\mathcal{N}

Glass Lab Tour

Students receive a tour of the MIT glass lab and the Department of Material Science and Engineering Blacksmithing shop.



Crane Building

Students apply theoretical structures knowledge to physical design, practice their creativity and brainstorming skills in a group setting, and learn about the limitations of theoretical calculations in practice while building foam cranes

Engineering Showcase

Students meet local engineers and learn about their work.

Rube Goldberg Design Challenge

In this capstone project, students apply their knowledge from coursework to build a Rube Goldberg Machine, a complex machine that performs a simple task. Students also get to apply their maker skills and gain confidence in their ability to perform hands on work in teams.

Example Schedule

	Week 1								
	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY				
Morning	Overview of Program	Materials	Electronics & Circuits	Motors & Gears	Rube Goldberg Brainstorming				
	Dhusios: Statia Earaga	matchars	Licensines a circuits	Motors & ocurs	Rabe oblabely blanstorming				
	Physics: Static Forces	Energy & Momentum	Safety Talk with Shop Tour	Static Torque	Structures				
	Make Foam Cutter								
Lunch			Lunch Talks						
Afternoon	Forces Problem Solving	Creativity, Brainstorming, Prototyping	Maker Activity	Glass Lab & DMSE TOUR	Cranes Activity and Pizza Dinner				
	Intro to Drawing	RG Brainstorm & Prototype (Materials + Energy &	RG Brainstorm & Prototype (Electronics & Circuits)						
Evening		Momentum)	, , , , , , , , , , , , , , , , , , , ,						

	Week 2								
	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY				
Morning	Rotational Motion	Step Sheet Review & Start Building	Building steps in pairs	Connect Steps, Test, Redesign, Re-test	Cleanup, mount cartoon & Step Sheets				
				3.1	Public Demo (5 machines x 2				
					times each)				
	Programming: Applying Equations to Real Systems.	Building steps in pairs	Connect each pair of steps	Test, Redesign, Re-test	Create Movies of RG Machines				
Lunch	Lunch Talks				Watch RG Movies During Lunch then presentation of certificates				
Afternoon									
	Brainstorm full machine, design wood structure, and create step sheets	Engineering Showcase	Subteams start connecting pairs of steps to other subteams to make complete machine	Testing & Runoff	Free Afternoon to Explore Boston & Cambridge!				

